Steinitz Class of Mordell Groups of Elliptic Curves With Complex Multiplication

نویسندگان

  • Tong LIU
  • Xianke ZHANG
چکیده

Let E be an elliptic curve having Complex Multiplication by the full ring OK of integers of K = Q( √ −D), let H = K(j(E)) be the Hilbert class field of K. Then the Mordell-Weil group E(H) is an OK-module, and its Steinitz class St(E) is studied. When D is a prime number, it is proved that St(E) = 1 if D ≡ 3 (mod 4); and St(E) = [P]t if p ≡ 1 (mod 4), where [P] is the ideal class of K represented by prime factor P of 2 in K, t is a fixed integer. General structures are also discussed for St(E) and for modules over Dedekind domain. These results develop the results by D. Dummit and W. Miller for D = 10 and some elliptic curves to more general D and elliptic curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steinitz Class of Mordell-weil Groups of Elliptic Curves with Complex Multiplication

Let E be an elliptic curve having Complex Multiplication by the ring OK of integers of K = Q( √−D), let H = K(j(E)) be the Hilbert class field of K. Then the Mordell-Weil group E(H) is an OK-module. Its Steinitz class St(E) is studied here. In particular, when D is a prime number, St(E) is determined: If D ≡ 3 (mod 4) then St(E) = 1; if D ≡ 1 (mod 4) then St(E) = [P]t, where P is any prime-idea...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

On certain sequences in Mordell–Weil type groups

In this paper we investigate divisibility properties of two families of sequences in the Mordell–Weil group of elliptic curves over number fields without complex multiplication. We also consider more general groups of Mordell–Weil type. M. Ward ([W], Theorem 1.) proved that a linear integral recurring sequence of order two which is not nontrivially degenerate has an infinite number of distinct ...

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

A Note on Twists of (y^2=x^3+1)

‎‎In the category of Mordell curves (E_D:y^2=x^3+D) with nontrivial torsion groups we find curves of the generic rank two as quadratic twists of (E_1), ‎and of the generic rank at least two and at least three as cubic twists of (E_1). ‎Previous work‎, ‎in the category of Mordell curves with trivial torsion groups‎, ‎has found infinitely many elliptic curves with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998